
MATH 3371 Sample Final Exam 
Instructor: Phanuel Mariano 

Name: 

Instructions: 

• All answers must be written clearly. 

• You may use a calculator, but you must show all your work in order to receive credit. 

• Be sure to erase or cross out any work that you do not want graded. 

• If you need extra space, you may use the back sides of the exam pages (if you do, please write 
me a note so that I know where to look). 

• You must include all work to receive full credit. 



1. Consider a standard deck of 52 cards. What is the probability of a four of a kind? (This occurs 
when the cards have denominations a, a, a, a, b. ) 
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2. Consider a roullete wheel consisting of 50 numbers 1 through 50, 0, and 00. If Phan always 

bets that the outcome will be one of the numbers 1 through 20 , what is the probability that 

(a) Phan will lose his first 7 bets, 

(b) his first win will occur on his ninth bet? 
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3. A manufacturing company sources widgets from three different suppliers (A, B, and C) . Based 
on the company's quality control data, it appears that 3 percent of widgets coming from A are 
faulty, as are 5 percent of the widgets coming from B , and 2 percent coming from C. Based on 
recent purchasing records, suppliers A, B, and C supply 30 percent, 20 percent, and 50 percent 
of the company's stock of widgets, respectively. 

(a) What is the probability that a random widget from the company's stock is faulty? 
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(b Given that a widget is faulty, what is the probability that it came from supplier C? 
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( c) Using the definition of independence of events, determine whether t he events F = { widget is faulty} 
and C = { widget came from supplier C} are independent or not . 
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4. UNH students have designed the new u-phone. They have determined that the lifetime of 
a U-Phone is given by the random variable X (measured in hours), with probability density 
function 

f(x) = { ~ X 2: 10. 
0 X ::S: 10 

(a) Use the PDF to find the probability that the u-phone will last more than 20 hours? 
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(b) Use the PDF)to find the probability that the u-phone will last less than 50 hours. f 
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5. You should also know how to answer questions regarding the following distributions. See study 
guide, past exams, and past sample exams. 

(a) Binomial 

(b) Poisson 

(c) Exponential 

(d) Normal 
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6. Suppose t he joint density function of the random variables X and Y is 

f(x , y) = {c (x + y) 0 < x < l, 0 < y < l . 
0 otherwise 

(a) Find the value of c. 

( f 

l 
_ \ r f JyJ~ ✓s { <. C ~+y)d y) rr 
- J Jo o >u 

l 1... y:::. l 

- C s r k)r + ~ j ) x 
o r 0 

\ 

I ;). f 

:., c 5
0 

CH, ~)r~-==- c[ ~ ._ -';,l 

':- C C \ 4 \1 ~ C 

'::J") 
(b) Set up the double integral for IP' ( X 2 + Y 2 ::; 1). No need to evaluate. 
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(c) Compute ]p> (Y > 3X) 
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Useful definitions and facts: 

Law of Total Probability. If F 1 , ... ,Fn are mutually exclusive events such that they make up 
the whole sample space, S = LJf=1 Fi then 

n 

JP (E) = L JP (E I Fi) JP(~) . 
i=l 

Bayes's Formula. If F1 , .. . , Fn are mutually exclusive events such that they make up the whole 
sample space, S = LJ~1 Fi then we have the following conditional probabilities: 

for each j = 1, ... , n. 

• Discrete random variable: 

- PMF (Probability Mass Function): Px(x) := JP(X = x), (NOTE: some texts may 
use the notation for Jx(x) = JP (X = x) to denote the PMF) 

* Properties of a pmf p(x): 

* . ote that we must have O < p(xi) S:: 1 for ,i = 1, 2, .... and p (x) = 0 for all other 
values of x can't attain. 

* Also must have 

LP(Xi) = l. 
i=l 

- CDF: Fx(x) := JP (X S:: x) . 

• Continuous Random Variables: 

• A random variable X is said to have a continuous distribution if there exists a nonnegative 
function f x ( called the probability distribution function or PDF) such that 

JP (a S:: X :S b)= 1b fx(x)dx 

for every a and b. 

- All PDFs must satisfy: 

l. f(x) ~ 0 for all x 

2. J~
00 

f(x)dx = l. 

- CDF: Fx(x) := JP (X :S x) 

• Expected Values: If g : IR -+ IR 

- Discrete R.V.: List X E {x1, x2, ... } 

* 1E [g (X)] = I:~1 g (xi) Px(xi) 
- Continuous R. V.: 
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* lE [g (X)] = J~
00 

g (x) f x (x) dx 

• Fact: For continuous RV we have the following useful relationship 

- Since Fx(x) = IP' (X :S x) = J~
00 

fx(y)dy then by the fundamental theorem of calculus 
we have 

Fx(x) = fx(x). 

• How to find the PDF of Y = g(X) where Xis the PDF of X. 

- Stepl: First start by writing the cdf of Y and in terms of Fx: 

- Step2: Then use the relation fv(y) = F{,, (y) and take a derivative of the expression 
obtained in Step 1. 

• Joint Distributions: 

- Discrete: joint probability mass(discrete density) function 

p(x, y) = IP (X = x , Y = y). 

* Some texts may use f ( x, y) to denote the PMF. 

- Continuous:For random variables X, Y we let f (x, y) be the joint probability den
sity function, if 

* Or in general if D C .IR2 is a region in the plane then 

!P((X, Y) ED) = J l f(x , y)dydx. 

- INDEPENDENCE: 

- Continuous (discrete) r. v. X, Y are independent if and only if their joint pdf (pmf) can 
be expressed as 

fx,v(x, y) = fx(x)fy(y). (Continuous Case) , 

Px,v(x, y) = px(x )py(y) (Discrete Case). 
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